Учёные представили инновационные искусственные мышцы, которые в сто раз сильнее человеческих. Три независимые группы исследователей разработали собственные варианты, различающиеся материалами и сферами применения.
Все синтетические мышцы имеют общую черту – как правило, они представляют собой упругие волокна, которые растягиваются и сокращаются, как и их природный аналог. Пионером в разработке искусственных мышц признан Рэй Боуман, директор Института нанотехнологий Техасского университета. На первых этапах исследования Боуман и его команда работали с самыми привычными материалами, которые можно найти в любом доме – нитками для шитья и леской. Они стремились доказать и наглядно продемонстрировать, что даже базовые материалы могут образовать подобные мышцам структуры. В ходе лабораторных испытаний техасцы пришли к наилучшим, на их взгляд, материалам для формирования волокон искусственных мышц – шёлку и бамбуку.
Учёные также разработали специальную оболочку, которая реагирует на электрохимические и температурные колебания. Покрытые этой оболочкой волокна сокращаются и двигаются подобно тому, как двигаются человеческие мышцы под воздействием внешних раздражителей. Подобный вариант синтетических мышц может найти применение в производстве умной одежды. Например, помещённые внутрь ткани мышечные волокна могут автоматически расширять «поры» материала в ответ на повышенную влажность или повышение температуры тела.
Исследователи из Университета Бордо разработали собственный вариант искусственной мышцы из эластичного полимера и графена. Их синтетическая мышца напоминает высокотехнологичный аналог резиновой ленты, используемой в резиномоторных авиамоделях. Главный научный сотрудник проекта Джинкай Юань и его коллеги постарались над тем, чтобы эту «резинку» не приходилось скручивать после каждого растяжения: комбинация графена и полимера в составе волокна позволяет создать «эффект памяти». Эластичный полимер может растягиваться и сжиматься, но контроль степени сокращения происходит через проводящий ток графеновый слой. Юань предполагает, что подобный концепт имеет потенциал в медицине, например, такие волокна можно использовать для управления работой миниатюрных клапанов внутри медицинских приборов.
В отличие от графеново-полимерных волокон, которые приводятся в движение при помощи электричества, принцип действия синтетических мышц, разработанных учёными из Массачусетского Технологического Института гораздо ближе к человеческим. Команда МТИ во главе с Мехметом Каником представила волокна из полиэтилена высокой плотности и эластомера. При нагревании тепло распространяется по волокнам равномерно, но из-за разницы коэффициентов теплового расширения один из полимеров быстро сокращается, а второй удерживает его от хаотичного сжатия, заставляя завиваться в виде спирали. Вдохновением для исследователей послужили растительные побеги-усики огурцов, которые сокращаются, регулируя давление в клетках. Сокращение волокна происходит даже при незначительных колебаниях температуры, потому материал не страдает от резких перепадов температуры и не теряет свои свойства даже после десяти тысяч циклов сжатия. При этом такая искусственная мышца может поднимать грузы, масса которых в 650 раз превышает её собственный.
В ходе лабораторных тестов специалисты экспериментировали с различными температурами: при нагревании волокна на 14°C общая длина нитей сократилась на 50%. Кроме того, исследователи попытались использовать синтетические мышцы для управления маленькой роботической рукой. Разогревая и охлаждая волокна они заставляли руку поднимать и перемещать небольшие грузы. Более того, изменяя расположение и соотношение нитей из разных материалов внутри полотна, учёные смогли управлять направлением движения. Силу сокращений также можно регулировать, изменяя пропорции и диаметр нитей исходных полимеров.
На данном этапе работ искусственные мышцы значительно уступают настоящим в плане эффективности их работы. Сегодня даже самые совершенные синтетические мышечные волокна преобразовывают в полезную работу не больше 3-5% затраченной энергии, оставшаяся энергия теряется в виде тепла. Если инженеры и биотехники преуспеют в устранении потерь энергии, возможности применения синтетических мышц будут безграничными: начиная от умной одежды и протезов до робототехники и экзоскелетов.